De novo Protein Sequencing by Combining Top-Down and Bottom-Up Tandem Mass Spectra

Xiaowen Liu

Department of BioHealth Informatics, Department of Computer and Information Sciences, Indiana University-Purdue University Indianapolis

Center for Computational Biology and Bioinformatics, Indiana University School of Medicine

Top-Down Proteomics Becomes Reality

"Early proteomics methods <u>used enzymes to</u> <u>digest proteins into pieces</u> that could be easily analyzed by mass spectrometry. Those methods are now mature and routinely detect peptides from thousands of proteins in a single run...

But the great strength of those methods is also their greatest weakness. <u>What's being</u> <u>analyzed is no longer the actual biological</u> <u>actors</u> but the pieces left after they've been broken apart...

By starting with intact proteins, rather than their pieces, <u>top-down analysis more accurately</u> <u>reflects the structure and properties of</u> <u>actual biological systems</u> than does bottomup proteomics...."

Top-Down vs. Bottom-Up MS

Top-Down vs Bottom-Up MS

Measurable *m*/*z* values

 Commercial iontrap/ Orbitrap mass spectrometers: up to 4000 m/z

- Bottom-up mass spectra
 - Small masses: 500 Da 4000 Da
 - Low charge
- Top-down mass spectra
 - Large masses, i.e., 20k Da
 - High charge ions

Large Masses Make Spectra Complex

Isotopes

C¹²: Mass: 12.000, frequency: 98.93% C¹³: Mass: 13.003, frequency: 1.07%

•100-carbon molecules

The proportion of molecules is with all 100 carbons being C¹² is 0.9893¹⁰⁰ ≈ 31.54%

Theoretical isotopomer envelope for Lysozyme (14303.88 Da)

An Example of Top-Down Mass Spectra

complex pattern of isotopomer envelopes.

Why Top-Down Proteomics Becomes Reality?

• High accuracy, high resolution, and high-throughput mass spectrometers: Orbitrap, FTICR.

Mass analyzer	Suitable for Top Down	Spectral acquisition time/s	Resolution/Da	Mass accuracy (ppm)	Performance at 8 kDa	Available fragmentation
Ion trap	+	0.05–0.3	1000	100–200		CID ETD
TOF					~^^^	CID ISD
TOF-TOF Q-TOF	+ +	< 0.01	10 000	5–20	North	PSD
FT						
Orbitrap	+ + +	0.1–1	60 000	3–10		CID ETD HCD CID
FTICR	+ + +	0.1–1	200 000	1–3		ECD

Protein Sequencing: Database Search

Bottom-up MS

Top-down MS

Antibodies

- An antibody is a large Y-shaped protein produced by B-cells.
- The antibody recognizes and binds to an antigen, a unique part of the foreign target.
- The variable domains of antibodies are highly mutated.
- Indispensable reagents for biomedical research and as diagnostic and therapeutic agents.
- The sequences of most antibodies are unknown.

De Novo Peptide Sequencing

Bottom-up MS

- The order of peptides is missing.
 - Which sequence is correct?

Candidate 1: D I Q M R P D S L S K MCDSEFK V T I T C K R

Candidate 2: P D S L S K D I Q M R V T I T C K R MCDSEFK

- Available tools
 - PEAKS Ma et. al. RCMS 2003
 - PepNovo Frank et al. JPR 2005
 - pNovo Chi et. al. JPR 2010

Peptide sequences

De Novo Protein Sequencing by Bottom-Up MS

- Multiple enzyme digestion
 - Trypsin: after residues R and K
 - GluC: after residues D and E
- Example

Target protein (unknown): DIQMRQKPSDLSKSVGDRVTITCKRSQ

Bottom-up spectra (trypsin):

>>>>>>

Bottom-up spectra (GluC):

De novo result: DIQMR

P SDLSKSVGD VTITCKR

- Challenges
 - Overlaps may be short
 - Very short peptides

Bandeira et al. Nature Biotechnology 2008

De Novo Protein Sequencing by Top-Down MS

- Top-down tandem mass spectra cover whole proteins.
- Example

Target protein (unknown): DIQMRQKPSDLSKSVGDRVTITCKRSQ

- Missing peaks
 - Resulting sequences contain gaps

De Novo Protein Sequencing by Combining Top-Down and Bottom-Up MS (TBNovo)

- Complementary information
 - Use bottom-up spectra to fill gaps in top-down spectra
 - Use top-down spectra to find the order of bottom-up spectra

Data Sets

- Light chain of alemtuzumab (MabCampath)
 - Top-down
 - Thermo LTQ Orbitrap Velos and Thermo Q-Exactive
 - ETD: 12134 spectra; CID: 7686; and HCD: 4931
 - Bottom-up
 - Thermo LTQ Orbitrap XL
 - HCD spectra
 - Trypsin: 2716 spectra, chymotrypsin: 4328, proteinase K: 1616 and pepsin: 1910
- Carbonic anhydrase 2 (CAH2 BOVIN)
 - Top-down
 - ETD: 3045; CID: 3363; HCD: 3437.
 - Bottom-up
 - Trypsin: 47536 spectra

Preprocessing

- Prefix residue masses corresponds to neutral b-ion masses.
- Convert all spectra to lists of candidate prefix residue masses.
- Bottom-up spectra
 - De novo peptide sequencing (PEAKS)
 - Represented by prefix residue masses of the peptides
- Top-down spectra
 - Spectral deconvolution (MS-Deconv)
 - Convert neutral masses to candidate prefix residue masses.
 - Merge multiple top-down spectra to one.

Ma et al. RCMS 2003, Liu et al. MCP 2010

Candidate Prefix Residue Masses

Prefix residue masses: 253 483, M-457

Candidate prefix residue masses: 253, 457, 483, ..., 569, M-253,..., M-59616

- Mass count score: number of prefix residue masses shared by a top-down spectrum and a bottom-up spectrum,
- Shifted bottom-up spectra: adding a shift value to each prefix residue mass
- Optimal shift: the shift that maximizes the mass count score between a top-down spectrum and a bottom-up spectrum.
- Shifted mass count score: the best mass count score between a topdown spectrum and a shift bottom-up spectrum.

- Keep only bottom-up spectra with a shifted mass count score >= 7.
- Keep only prefix residue masses supported by two bottom-up spectra or the top-down spectrum + a bottomup spectrum
- Result: combined prefix residue mass list

Gap Filling

- Shift bottom-up spectra to possible cleavage sites.
- Map bottom-up spectra to the combined prefix residue mass list.

Gap Filling

- Compute possible peptide masses
- Find bottom-up spectra with similar precursor masses

Masses used to fill the gap

Spectral Graph

- Compute best shift for mapping bottom-up spectrum to the combined prefix residue masses.
- Update the list of combined prefix residue masses.
- Convert the list of prefix residue masses to a spectral graph.
- Find a heaviest path corresponding a protein sequence that best explains the experimental spectra.

Results

- Light chain of alemtuzumab (MabCampath)
 - 214 amino acids
 - Tbnovo reported 188 prefix residue masses, 184 were correct.
 - Coverage 86.9%, accuracy 97.8%
- Carbonic anhydrase 2 (CAH2 BOVIN)
 - 258 amino acids
 - Tbnovo reported 229 prefix residue masses, 194 were correct.
 - Coverage 75.2%, accuracy 84.7%

De novo sequencing result of MabCampath light chain

	DIQMTQSPSS	L S A S V G D R V T	ITCKASQNID KY <mark>L</mark> NWYQQKP GKAP	KLLI
	[356.17] M T Q S P S S	I S A S V G D R V T	ITCK[286.19]NID KY <mark>I</mark> NWYQQKP GKAP	QII
1	T N N <mark>L</mark> Q T G V P S	RFSGSGSGTD	FTFTISSLQP EDIATYYC <mark>L</mark> Q HISR	P R T F
7	T N N <mark>I</mark> Q T G V P S	RF[231.10]G[360.17]	FTFTI[1367.59]YC <mark>I</mark> Q HISR	P R T F
01	G T K V E I K R <mark>T V</mark>	A A P S V F I F P P	SDEQ <mark>L</mark> KSGTA SVVC <mark>LL</mark> NNFY PREA	<mark>K</mark> VQW
2	G T K V E I K R <mark>S I</mark>	A A P S V F I F P P	SDEQ <mark>I</mark> KSGTA SVVC <mark>II</mark> NNFY PREA	QPRR
51	D N A <mark>L</mark> Q S G N S Q	E S V T E Q D S K D	STYS <mark>L</mark> SST <mark>L</mark> T <mark>LSK</mark> ADYEKH <mark>K</mark> VYAC	Е V Т Н
32	D N A <mark>I</mark> Q S G N S Q	E S V T E Q D S K D	STYS <mark>I</mark> SST I T <mark>ISQ</mark> ADYEKH <mark>Q</mark> VYAC	Е V Т Н
01 82	L SSPVTKSFN 2 I SSPVTKSF[RGEC 214 456.04] 191		

Software Tools

- **TBNovo**: Protein sequencing by combing top-down and bottom-up tandem mass spectra.
- **MS-Deconv**: Top-down spectral deconvolution.
- **MS-Align+/TopPIC**: Protein identification by top-down tandem mass spectra.
- http://mypage.iu.edu/~xwliu/

Acknowledgements

Pavel A. Pevzner

PNNL

UCSD

Si Wu

Ljiljana Paša-Tolić

Erasmus MC, Netherlands

Lennard J. M. Dekker, Martijn M. Vanduijn Theo M. Luider

Saint Petersburg Academic University

Mikhail Dvorkin Sonya Alexandrova Kira Vyatkina

Nikola Tolić